

Causes and Factors of Stylistic Differences in Human-Robot Dialogue USC Institute for Creative Technologue

Creative Technologies

Stephanie M. Lukin, Kimberly A. Pollard, Matthew Marge, Claire Bonial, Cassidy Henry, Ron Artstein, David Traum, Clare R. Voss stephanie.m.lukin.civ@mail.mil

Motivation

See our "ScoutBot" demo at ACL!

· Analytic understanding of stylistic differences and their possible causes in human-robot dialogue to influence an adaptable dialogue policy sensitive to individual and situational differences.

Define a taxonomy of styles and examine taxonomy in unconstrained human-robot instruction-giving dialogue (Wizard-of-Oz) [2].

Verbosity Style defined as the number of words per instruction

Lower Verbosity

Take pictures in all four directions

Executing... Done

Higher Verbosity

Robot face north, take a picture, face south, take a picture, face east, take a picture

Executing... Done

Instruction Structural Style defined as number of intents per instruction

Minimal Structure

Go through the other door

Take a picture

Executing... Done

Executing... Done

Extended Structure

Face your starting position and send a picture

Executing... Done

Hypotheses, Results, & Future Work

Hypothesize relationships between style and miscommunication, individual differences, trust, and experience

Miscommunication

Miscommunication taxonomy [1] applied to user utterances:

Response-Level: Missing Information, Unclear

Go to the wall behind you, face

north, and then take a picture

Do you want me to back up to the wall behind me, or turn to go to it?

- Environment-level: Ambiguous, Impossible, Capabilities

Can you move forward to take a picture of the object

> I'm not sure which object you are referring to.

Hypotheses

H₁: Rate of miscommunication is related to verbosity

H₂: Rate of miscommunication is related to structure

Results

Verbosity not significantly correlated with miscommunication. For Minimal, miscommunications significantly more likely Ambiguous. For Extended, miscommunication tend to be Unclear.

Future Work

Analyze substance of instructions to uncover if content is a factor. Turn-by-turn analysis to understand where style shift occurs, and why.

Style and Trust

40-question Trust Perception Scale-HRI [3]

Hypotheses

H₅: Trust in the robot is related to verbosity

H₆: Trust in the robot is related to structure

Results

Higher trust significantly related to higher verbosity. Nonsignificant trend for higher trust with more Extended use.

Future Work

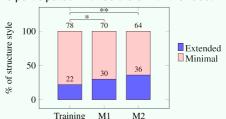
If the users' trust in the robot is gauged during an interaction, the system can expect adjustments to verbosity and structure, and appropriate feedback can be provided.

Style and Individual Differences

Hypotheses

H₃: Individual users differ in verbosity H₄: Individual users differ in structure use

Results


Users differ in verbosity and in structure.

Future Work

Explore influence of introspection, personality, perspective-taking.

Style and Time & Experience

Users participated in three trials with the robot

Hypotheses

H₇: Time/experience with the robot is related to verbosity H₈: Time/experience with the robot is related to structure

Results

Significant increase of verbosity from Training to M1 and M2. Significant increase of Extended use from Training to M1.

Future Work

Understanding of interaction time or experience effects could better support changes of styles that emerge with repeated interactions.

References

- [1] Higashinaka et al. 2015. "Towards Taxonomy of Errors in Chat-oriented Dialogue Systems". SIGDIAL.
- [2] Marge et al. 2017. "Exploring Variation of Natural Human Commands to a Robot in a Collaborative Navigation Task". Workshop on Language Grounding for Robotics.
- [3] Schaefer. 2016. "Measuring Trust in Human Robot Interactions: Development of the 'Trust Perception Scale-HRI'". Robust Intelligence and Trust in Autonomous Systems.